Emerging characterization of the role of SIRT3-mediated mitochondrial protein deacetylation in the heart.
نویسنده
چکیده
Studies to quantify the protein acetylome show that lysine-residue acetylation rivals phosphorylation in prevalence as a posttranslational modification. Interesting, this posttranslational modification is modified by nutrient flux and by redox stress and targets the vast majority of metabolic pathway proteins in the mitochondria. Furthermore, the mitochondrial deacetylase enzyme SIRT3 appears to be regulated by exercise in skeletal muscle and in response to pressure overload in the heart. The alteration of protein lysine residues by acetylation and the enzymes controlling deacetylation are beginning to be explored as important regulatory events in the control of mitochondrial function and homeostasis. This review focuses on the mitochondrial targets of SIRT3 that are functionally implicated in heart biology and pathology and on the direct cardiac consequences of the genetic manipulation of SIRT3. As therapeutic modulators of other SIRT isoforms have been identified, the longer-term objective of our understanding of this biology would be to identify SIRT3 modulators as putative cardiac therapeutic agents.
منابع مشابه
High Sensitivity of SIRT3 Deficient Hearts to Ischemia-Reperfusion Is Associated with Mitochondrial Abnormalities
Aim: Sirtuins are NAD+-dependent deacetylases that regulate cell metabolism through protein acetylation/deacetylation, and SIRT3 is the major deacetylase among mitochondrial isoforms. Here, we elucidated the possible role of acetylation of cyclophilin D, a key regulator of the mitochondrial permeability transition pore (mPTP), in mitochondria-mediated cardiac dysfunction induced by ischemia-rep...
متن کاملSIRT3-dependent deacetylation exacerbates acetaminophen hepatotoxicity.
Acetaminophen/paracetamol-induced liver failure--which is induced by the binding of reactive metabolites to mitochondrial proteins and their disruption--is exacerbated by fasting. As fasting promotes SIRT3-mediated mitochondrial-protein deacetylation and acetaminophen metabolites bind to lysine residues, we investigated whether deacetylation predisposes mice to toxic metabolite-mediated disrupt...
متن کاملRegulation of Sirtuin-Mediated Protein Deacetylation by Cardioprotective Phytochemicals
Modulation of posttranslational modifications (PTMs), such as protein acetylation, is considered a novel therapeutic strategy to combat the development and progression of cardiovascular diseases. Protein hyperacetylation is associated with the development of numerous cardiovascular diseases, including atherosclerosis, hypertension, cardiac hypertrophy, and heart failure. In addition, decreased ...
متن کاملSIRT3 in Cardiac Physiology and Disease
Functional defects in mitochondrial biology causally contribute to various human diseases, including cardiovascular disease. Impairment in oxidative phosphorylation, mitochondrial oxidative stress, and increased opening of the mitochondrial permeability transition pore add to the underlying mechanisms of heart failure or myocardial ischemia-reperfusion (IR) injury. Recent evidence demonstrated ...
متن کاملSIRT3 regulates mitochondrial fatty-acid oxidation by reversible enzyme deacetylation
Sirtuins are NAD-dependent protein deacetylases. They mediate adaptive responses to a variety of stresses, including calorie restriction and metabolic stress. Sirtuin 3 (SIRT3) is localized in the mitochondrial matrix, where it regulates the acetylation levels of metabolic enzymes, including acetyl coenzyme A synthetase 2 (refs 1, 2). Mice lacking both Sirt3 alleles appear phenotypically normal...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 301 6 شماره
صفحات -
تاریخ انتشار 2011